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INTRODUCTION

This paper addresses the question what geometrical restrictions are

imposed on static magnetic fields by the MagnetoHydro-Static (MHS) equations.

This question is of obvious importance for the problem of coronal heating,

since it has been argued by Parker (1972, 1979 and 1986; see references

therein) that the MHS-equations in general overdetermine the magnetic field

structure and that consequently the field needs to have some sort of symmetry

to satisfy all the constraints imposed on it by the equations. The field in

the solar corona is determined by the MHS equations and the boundary

conditions at the corona/photosphere interface. The latter are the normal

component of the magnetic field at the boundary (to ensure the continuity of

the magnetic field) and the connectivity of the field lines, defined as the

positions of all field llne footpolnts at the boundary (because the field

lines are frozen in, Sturrock and Woodbury, 1967). These boundary conditions

are completely arbitrary, because they are determined by the magnetic fields

and the fluid motions in the photosphere and convection zone, that cannot be

altered by the relatively weak forces from the coronal magnetic field. The

general mathematical problem is therefore to determine the solutions of the

MHS-equations in the corona subject to an arbitrary normal component of the

magnetic field at the boundary and arbitrary connectivity.

It is very unlikely that these boundary conditions would conspire to

satisfy any symmetry requirement that the MHS equations might impose. And even

if they would at a given moment, only minor footpoint displacements - as a

result of the photospheric velocity field - would destroy the symmetry. Hence

the coronal magnetic field cannot be in static equilibrium at any time, and,

according to Parker (1983), the force free condition will break down at some

locations in the corona, where current sheets will form. In these sheets the

dissipation of magnetic field is much larger than that calculated with

classical resistivity and the resulting heating rate may be large enough to

explain the observed non-thermal heating of the corona. This process is called

topological heating.

Recently, however, Parker's hypothesis has been challenged by Van

Ballegooijen (1985) and Antiochos (1986); see also their contributions in this

chapter. Van Ballegooijen points out an error in Parker's (1972) original

demonstration of the need for an ignorable coordinate and furthermore, by

improving upon Parker's analysis, gives an algorithm for calculating solutions

to the MHS equations, subject to arbitrary boundary conditions. Antiochos

argues that the problem is generally well posed by showing that when the

magnetic field is expressed in Euler potentials, the topology of the field in

the corona is completely determined by the values of the potential at the

boundary. Consequently there is no need for the formation of current sheets in
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these analyses.

Clearly the question whether there is the requirement of some sort of

symmetry in the solutions of the MHS equations deserves further attention.

This symmetry has to be of a subtler form than that of an ignorable coordinate

as once proposed (Parker, 1972), since recently explicit analytical examples

have been given of fully 3-D magnetostatic equilibria (Low, 1985). The latter

solutions still show some form of symmetry, however.

The problem is the more intriguing because it has recently been shown

quite convincingly by Tsinganos et al. (1984) and Moffat (1985) - in very

different ways - that magnetostatic equilibria in Tokamak type structures do

lead to topological dissipation, when they do not exhibit symmetry. However,

in Tokamaks the boundary conditions are quite different: here the requirement

is that the normal component of the field vanishes everywhere at the surface

of the containment vessel and hence the field is self contained (see Martens,

1985, for a comparison). The field lines in a Tokamak are either infinite in

length, or close in themselves, quite the contrary of the structure of closed

coronal fields, where the field lines are anchored at both ends. If there is a

difference between closed coronal magnetic fields and Tokamak-type fields with

regard to their intrinsic symmetry, this difference must be caused by the

nature of the boundary conditions. The difference then is probably related to

the fact that the corona/photosphere interface takes up the stresses from the

coronal field, while the containment vessel of a Tokamak obviously doesn't.

In this paper I will take up the issue of the geometrical constraints on

magnetostatic equilibria from a somewhat different point of view. I will write

the MHS equations in a general coordinate system - not necessarily orthogonal

- and then choose the coordinates in such a way that the pressure gradients

and current density vector are along coordinate lines, which makes their

expressions very simple. I will then try to determine what constraints the MHS

equations impose on the geometry of the solutions, that is expressed in the

metric tensor. The first results do indicate some restrictions to the possible

geometries of the solutions, but these do not seem to represent some sort of

symmetry. The analysis of this paper cannot be regarded as completed, and more

definite results will be published in the literature.

THE NHS EQUATIONS IN ARBITRARY COORDINATE SYSTEMS

The basic equations governing magnetostatic equilibria are well known

(i),

_._ = 0 (2).

There are no general solutions known to this deceivingly simple looking set of

equations. The system is nonlinear because of the Lorentz-force term in Eq.

(I): the sum of two solutions in general does not represent a third solution.

All particular analytical solutions that are known to date have some sort of

symmetry (Low, 1985).

An alternative notation of Eqs. (I) and (2) in an arbitrary orthogonal

coordinate system is found after introduction of the metric tensor
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h12 0 0 ]gij = I0 h22 00 h3 2

(3),

where the h i represent the length of the unit vectors. The components of the

magnetic field are identi_%ed with the three independent components of an
antisymmetric 3-D tensor B 3,

B3 _ BI , B2
B 12 - B 23 =-- B 31 =-- (4).

hlh 2 h_3 hlh3

The identification of the components of the magnetic field with those of an

antisymmetric tensor, instead of with the components of a contravariant

vector, will lead to a particulary simple formulation of the equations.

Moreover, it accounts properly for the fact that the magnetic field is a

pseudo-vector, instead of a real vector: by inspection of the expression for

the Lorentz-force one finds that the magnetic field must remain the same under

a mirror transformation of the the coordinates (x ÷ -x, etc.), since the

Lorentz force and the current both will change sign.

The contravariant components of the current density vector are given by

+ A

ji _ (J'xi)
hi (5),

while the covariant components of the pressure gradient are given in the same

way.

The basic equations in this notation are

P¶k = jiBkl (6),

ji BiJ¶¶J _g(/_BiJ= = )lJ (7),

{Bij¶k} = 0 (8).

Here ¶¶i denotes covariant differentiation and .. ordinary differentiation
with respect to the variable denoted by the index.l%..} means a summation over

all permutations of the indices of the tensor within the brackets. For the

antisymmetric magnetic tensor it reduces to

B12¶3 + B23¶I + B31¶2 = 0
(9)•

FLUX SURFACE COORDINATES

Now I generalize the MHS equations (6) to (8) and suppose their validity

in non-orthogonal coordinate systems. The expressions remain the same of

course, only the metric tensor has off-dlagonal elements. This allows one to
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choose a coordinate system that makes the equations particulary simple. First
I choose the pressure gradient parallel to the first unit vector and hence

P * P(xI) (10).

The isobaric surfaces are now by definition surfaces of constant xI. Further
I choose x2 and x3 perpendicular to Xl, but not necessarily perpendicular to
each other. This means that the metric tensor has the form

!ii 0 0 ]
gi_ = g22 g23

J

g23 g33

(II),

and has therefore 4 independent components. From the force balance equations

(7) and Eq. (Ii) it can now easily be shown that

jl:O

B23 = -B 32 = 0

B23 = -B32 = 0 (12).

The equation expressing the divergencelessness of the magnetic field, Eq. (8),

reduces to

B12¶3 + B3112 : 0 (13),

with the solution,

BI2 : A¶2

BI3 = A¶3 (14),

and A(Xl,X2,X 3) an arbitrary function. Now that the three components of the
magnetic field have been reduced to dne unknown function only dne component of

the force-balance equations remains to be satisfied,

P¶I = j2A¶2 + j3A¶3 (15),

while the demand jl = 0 leads to a second constraint on the solutions

(reminiscent of Low's (1980) compatibility relation).

So far the non-orthogonality of the coordinates has not been used. I make

a small digression from my main argument now to iexplore somewhat further the
compatability constraint in orthogonal systems, j = 0.

(_B12)12 + (_B13)13 : 0 (16).

In an orthogonal coordinate system I can now reduce the force balance equation

and the compatability constraint to:

(17),
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and,

hlh2h3P¶l = A¶2[hlh 2 _I +
(18).

By trial and error one may find that it is extraordinarily difficult to obtain

functions A that satisfy both constraints Eqs. (17) and (18). To give a short

and very simple example I shall investigate the case where the isobaric

surfaces are cylinders. We have (Xl,X2,X 3) = (r,_,z), hl=h3=l, h2=r, and
therefore Eqs. (17) and (18) reduce to

AI@1@ + rZAlz¶z = 0 (19).

rPlr = A, afA1__l
• v[ r J¶r + A1zIA¶zr)¶r

The only solution of Eq.(19) that is consistent with P = P(r) is

(2o).

A(r,@,z) = f(r)z + g(r)@ (21),

and Eq. (20) takes the well known form

P¶r =I/_B# 2 + BzZ)¶r + B_ 2/r

after the identification

(22),

g(r) = B r , f(r) = -B (23).
z

The solutions of Eq. (22) are well known (L_st and Schl_ter, 1954). I conclude

that the requirement of cylindrical isobares introduces the necessity of

cylindrical symmetry of the magnetic field. However, the general question one

would llke to answer remains: what are the restrictions imposed on the

function A by Eqs. (17) and (18) in any coordinate system?

NON-ORTHOGONAL C00RDINAI"E$

I will proceed with the main line of my argument now and specify further

the choice of the coordinate system. I choose the direction of the second unit

vector along the current density vector, i.e.

i
j = (0,j 2,0) (24).

It can be shown that with this choice of the second unit vector the coordinate

system cannot be orthogonal anymore. In Fig. I a cylindrical surface is drawn

that contains a set of field lines and a set of current density vectors. The

first unit vector is by definition perpendicular to this surface, while the

other two must lie within the surface. In the figure a current line is drawn

which has the second unit vector everywhere parallel to it. In an orthogonal

coordinate system the third unit vector must be everywhere perpendicular to

the second one, but if one follows the third coordinate from point (Xl,X2,X 3)
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one finds that it intersects again the current line at the point

(xl,x2,x3+Ax3). However, one may also follow the current llne from the point
(x ,x ,x ) and then the second intersection is reached at (x ,x +Ax ,x ). This

2 3 + I 2 2 3
po}nt is physically the same as (xl,Xg,X _ Axe) and hence it must have the same

coordinates; if not, the eoordinat_ s_stem b_eomes double (and multi-) valued.

This requirement can be met by having x 2 and x 3 as cyclic coordinates: x 9 +

Ax 2 E x2, and x + Ax 3 E x 3 (just as in spherical coordinates). However, now
one runs into t_e contradfction that two physically different points (the

first and the second intersection) have identical coordinates; a situation

which is also undesirable. I conclude that it is impossible to choose a

consistent isobaric orthogonal coordinate system if _//x 2.

VALID CHOICE FOR X 3 -'-"

f
J

STARTING POINT _- X_

-,--.- SECOND INTERSECTION

"'"_CURRENT DENSITY VECTOR

Figure i. A demonstration of the inconsistency of an orthogonal coordinate

system with one unit vector parallel to the pressure gradient and

another with the current density vector.

A valid choice for the third coordinate is indicated in Fig. I. It is

clear that as one follows the third unit vector, the line will close in itself

and there is no inconsistency. With this choice the third vector is not

perpendicular anymore to the second and hence the term g23=g32 in the metric

tensor must be nonzero.

Eqs. (14), (15) and (16) were derived for the metric Eq. (II). B_ the

spec[al choice for the second coordinate one finds in addition, because j =0,

(#g B31) II = 0 (25).

Eqs. (16) and (25) are satisfied when

(_gB 21) = f(xl,x3) + m¶3(x2,x 3)
(26),
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and

(_gB 31) = _mlz(x2,x3) (27),

with f and m arbitrary functions. The force balance equation (15) now reduces

to

JgP¶l = A¶2f¶l (28).

The contravariant components of the field tensor may be eliminated with

A¶2 = gllg22 BI2 + gllg23B 13 (29),

A¶3 = gllg32 BI2 + gllg33B 13 (30),

and one is left with three equations, (26), (27) and (28), for the function A.

For a given geometry g..,
is clearly overdetermin_ and arbitrary functions f, m and P, the function Aand consequently some restrictions must apply to the

possible choices of the geometry. In this stage of the research it is not

clear yet what these restrictions are, although it seems that the restrictions

do not necessarily impose an ignorable coordinate.

More work along the lines of this paper is needed to shed light on the

geometries that are consistent with MHS-equilibrla. In particular the

restrictions that the boundary conditions impose on the possible solutions

will be investigated.
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